357 lines
15 KiB
Python
Raw Normal View History

from collections import OrderedDict
import unicodedata
from typing import Optional
2025-04-18 20:38:55 +09:00
import math
import numpy as np
from tinygrad.nn import state
from tinygrad.tensor import Tensor, dtypes
from tinygrad.helpers import getenv
#
# checkpointing utils
#
def invert_dict(d): return {v: k for k, v in reversed(d.items())}
def dedup_dict(d): return invert_dict(invert_dict(d))
# store each tensor into the first key it appears in
def get_training_state(model, optimizer, scheduler):
# hack: let get_state_dict walk the tree starting with model, so that the checkpoint keys are
# readable and can be loaded as a model for eval
train_state = {'model': model, 'optimizer': optimizer, 'scheduler': scheduler}
return dedup_dict(state.get_state_dict(train_state))
def load_training_state(model, optimizer, scheduler, state_dict):
# use fresh model to restore duplicate keys
train_state = {'model': model, 'optimizer': optimizer, 'scheduler': scheduler}
big_dict = state.get_state_dict(train_state)
# hack: put back the dupes
dupe_names = {}
for k, v in big_dict.items():
if v not in dupe_names:
dupe_names[v] = k
assert k in state_dict
state_dict[k] = state_dict[dupe_names[v]]
# scheduler contains optimizer and all params, load each weight only once
scheduler_state = {'scheduler': scheduler}
state.load_state_dict(scheduler_state, state_dict)
def gaussian_kernel(n, std):
from scipy import signal
gaussian_1d = signal.windows.gaussian(n, std)
gaussian_2d = np.outer(gaussian_1d, gaussian_1d)
gaussian_3d = np.outer(gaussian_2d, gaussian_1d)
gaussian_3d = gaussian_3d.reshape(n, n, n)
gaussian_3d = np.cbrt(gaussian_3d)
gaussian_3d /= gaussian_3d.max()
return gaussian_3d
def prepare_arrays(image, roi_shape=(128, 128, 128)):
assert len(roi_shape) == 3 and any(roi_shape)
image_shape = list(image.shape[2:])
result = np.zeros((1, 3, *image_shape), dtype=image.dtype)
norm_map = np.zeros_like(result)
norm_patch = gaussian_kernel(roi_shape[0], 0.125 * roi_shape[0]).astype(norm_map.dtype)
return result, norm_map, norm_patch
def get_slice(image, roi_shape=(128, 128, 128), overlap_factor=0.5):
assert len(roi_shape) == 3 and any(roi_shape)
assert 0 < overlap_factor < 1
image_shape, dim = list(image.shape[2:]), len(image.shape[2:])
strides = [int(roi_shape[i] * (1 - overlap_factor)) for i in range(dim)]
size = [(image_shape[i] - roi_shape[i]) // strides[i] + 1 for i in range(dim)]
for i in range(0, strides[0] * size[0], strides[0]):
for j in range(0, strides[1] * size[1], strides[1]):
for k in range(0, strides[2] * size[2], strides[2]):
yield i, j, k
def _get_best_indices(logits, n_best_size):
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
return list(map(lambda x: x[0], index_and_score))[:n_best_size]
def _is_punctuation(char):
if (cp := ord(char)) in range(33, 48) or cp in range(58, 65) or cp in range(91, 97) or cp in range(123, 127):
return True
return unicodedata.category(char).startswith("P")
def _is_whitespace(char):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
return unicodedata.category(char) == "Zs"
def _is_control(char):
if char == "\t" or char == "\n" or char == "\r":
return False
return unicodedata.category(char).startswith("C")
def _run_split_on_punc(text):
if text in ("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"):
return [text]
start_new_word = True
output = []
for i in range(len(text)):
if _is_punctuation(char := text[i]):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
return ["".join(x) for x in output]
def _run_strip_accents(text):
output = []
for char in unicodedata.normalize("NFD", text):
if unicodedata.category(char) != "Mn":
output.append(char)
return "".join(output)
def _clean_text(text):
output = []
for char in text:
if not ((cp := ord(char)) == 0 or cp == 0xfffd or _is_control(char)):
output.append(" " if _is_whitespace(char) else char)
return "".join(output)
def _get_final_text(pred_text, orig_text):
def _strip_spaces(text):
ns_text = ""
ns_to_s_map = OrderedDict()
for i, c in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_text)] = i
ns_text += c
return ns_text, ns_to_s_map
orig_tokens = _clean_text(orig_text).strip().split()
split_tokens = []
for token in orig_tokens:
if token not in ("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"):
token = token.lower()
token = _run_strip_accents(token)
split_tokens.extend(_run_split_on_punc(token))
tok_text = " ".join(" ".join(split_tokens).strip().split())
start_position = tok_text.find(pred_text)
if start_position == -1:
return orig_text
end_position = start_position + len(pred_text) - 1
orig_ns_text, orig_ns_to_s_map = _strip_spaces(orig_text)
tok_ns_text, tok_ns_to_s_map = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
return orig_text
tok_s_to_ns_map = {v: k for k, v in tok_ns_to_s_map.items()}
orig_start_position = None
if start_position in tok_s_to_ns_map:
if (ns_start_position := tok_s_to_ns_map[start_position]) in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
return orig_text
orig_end_position = None
if end_position in tok_s_to_ns_map:
if (ns_end_position := tok_s_to_ns_map[end_position]) in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
return orig_text
output_text = orig_text[orig_start_position:(orig_end_position + 1)]
return output_text
def get_bert_qa_prediction(features, example, start_end_logits):
prelim_predictions = []
for i, feature in enumerate(features):
for start_index in _get_best_indices(start_end_logits[i][0], 20):
for end_index in _get_best_indices(start_end_logits[i][1], 20):
if start_index >= len(feature["tokens"]) or end_index >= len(feature["tokens"]):
continue
if start_index not in feature["token_to_orig_map"] or end_index not in feature["token_to_orig_map"]:
continue
if not feature["token_is_max_context"].get(start_index, False):
continue
if end_index < start_index or end_index - start_index + 1 > 30:
continue
prelim_predictions.append({
"feature_index": i,
"start_index": start_index,
"end_index": end_index,
"start_logit": start_end_logits[i][0, start_index],
"end_logit": start_end_logits[i][1, end_index]
})
predictions = sorted(prelim_predictions, key=lambda x: (x["start_logit"] + x["end_logit"]), reverse=True)
if len(predictions) > 0:
feature = features[predictions[0]["feature_index"]]
tok_tokens = feature["tokens"][predictions[0]["start_index"]:(predictions[0]["end_index"] + 1)]
orig_doc_start = feature["token_to_orig_map"][predictions[0]["start_index"]]
orig_doc_end = feature["token_to_orig_map"][predictions[0]["end_index"]]
orig_tokens = example["context"][orig_doc_start:(orig_doc_end + 1)]
tok_text = " ".join(tok_tokens).replace(" ##", "").replace("##", "")
tok_text = " ".join(tok_text.strip().split())
orig_text = " ".join(orig_tokens)
return _get_final_text(tok_text, orig_text)
return "empty"
def get_mlperf_bert_config():
2025-04-18 20:38:55 +09:00
"""benchmark is BERT-large"""
ret = {"attention_probs_dropout_prob": 0.1, "hidden_dropout_prob": 0.1, "vocab_size": 30522, "type_vocab_size": 2, "max_position_embeddings": 512}
match (bert_size:=getenv("BERT_SIZE", "large")):
case "large": ret.update({"hidden_size": 1024, "intermediate_size": 4096, "num_attention_heads": 16, "num_hidden_layers": 24})
case "tiny": ret.update({"hidden_size": 128, "intermediate_size": 512, "num_attention_heads": 2, "num_hidden_layers": 2})
case _: raise RuntimeError(f"unhandled {bert_size=}")
2025-04-18 20:38:55 +09:00
if (bert_layers:=getenv("BERT_LAYERS")): ret["num_hidden_layers"] = bert_layers
return ret
def get_mlperf_bert_model():
from extra.models import bert
from examples.mlperf.initializers import LinearBert, EmbeddingBert, LayerNormBert
bert.Linear = LinearBert
bert.Embedding = EmbeddingBert
bert.LayerNorm = LayerNormBert
from extra.models.bert import BertForPretraining
config = get_mlperf_bert_config()
if getenv("DISABLE_DROPOUT", 0):
config["hidden_dropout_prob"] = config["attention_probs_dropout_prob"] = 0.0
2025-04-18 20:38:55 +09:00
return BertForPretraining(**config)
2025-04-18 20:38:55 +09:00
def get_fake_data_bert(BS:int):
return {
2025-04-18 20:38:55 +09:00
"input_ids": Tensor.empty((BS, 512), dtype=dtypes.int32, device="CPU"),
"input_mask": Tensor.empty((BS, 512), dtype=dtypes.int32, device="CPU"),
"segment_ids": Tensor.empty((BS, 512), dtype=dtypes.int32, device="CPU"),
"masked_lm_positions": Tensor.empty((BS, 76), dtype=dtypes.int32, device="CPU"),
"masked_lm_ids": Tensor.empty((BS, 76), dtype=dtypes.int32, device="CPU"),
"masked_lm_weights": Tensor.empty((BS, 76), dtype=dtypes.float32, device="CPU"),
"next_sentence_labels": Tensor.empty((BS, 1), dtype=dtypes.int32, device="CPU"),
}
2025-04-18 20:38:55 +09:00
def find_matches(match_quality_matrix:np.ndarray, high_threshold:float=0.5, low_threshold:float=0.4, allow_low_quality_matches:bool=False) -> np.ndarray:
BELOW_LOW_THRESHOLD, BETWEEN_THRESHOLDS = -1, -2
def _set_low_quality_matches_(matches:np.ndarray, all_matches:np.ndarray, match_quality_matrix:np.ndarray):
highest_quality_foreach_gt = np.max(match_quality_matrix, axis=1)
pred_inds_to_update = np.nonzero(match_quality_matrix == highest_quality_foreach_gt[:, None])[1]
matches[pred_inds_to_update] = all_matches[pred_inds_to_update]
assert low_threshold <= high_threshold
matched_vals, matches = match_quality_matrix.max(axis=0), match_quality_matrix.argmax(axis=0)
all_matches = np.copy(matches) if allow_low_quality_matches else None
below_low_threshold = matched_vals < low_threshold
between_thresholds = (matched_vals >= low_threshold) & (matched_vals < high_threshold)
matches[below_low_threshold] = BELOW_LOW_THRESHOLD
matches[between_thresholds] = BETWEEN_THRESHOLDS
if allow_low_quality_matches:
assert all_matches is not None
_set_low_quality_matches_(matches, all_matches, match_quality_matrix)
return matches
def box_iou(boxes1:np.ndarray, boxes2:np.ndarray) -> np.ndarray:
def _box_area(boxes:np.ndarray) -> np.ndarray: return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def _box_inter_union(boxes1:np.ndarray, boxes2:np.ndarray) -> tuple[np.ndarray, np.ndarray]:
area1, area2 = _box_area(boxes1), _box_area(boxes2)
lt, rb = np.maximum(boxes1[:, None, :2], boxes2[:, :2]), np.minimum(boxes1[:, None, 2:], boxes2[:, 2:])
wh = np.clip(rb - lt, a_min=0, a_max=None)
inter = wh[:, :, 0] * wh[:, :, 1]
union = area1[:, None] + area2 - inter
return inter, union
inter, union = _box_inter_union(boxes1, boxes2)
return inter / union
def generate_anchors(input_size:tuple[int, int], scales:Optional[tuple[Tensor, ...]]=None, aspect_ratios:Optional[tuple[Tensor, ...]]=None) -> list[np.ndarray]:
def _compute_grid_sizes(input_size:tuple[int, int]) -> np.ndarray:
return np.ceil(np.array(input_size)[None, :] / 2 ** np.arange(3, 8)[:, None])
scales = tuple((i, int(i * 2 ** (1/3)), int(i * 2 ** (2/3))) for i in 2 ** np.arange(5, 10)) if scales is None else scales
aspect_ratios = ((0.5, 1.0, 2.0),) * len(scales) if aspect_ratios is None else aspect_ratios
aspect_ratios = tuple(ar for ar in aspect_ratios)
grid_sizes = _compute_grid_sizes(input_size)
assert len(scales) == len(aspect_ratios) == len(grid_sizes), "scales, aspect_ratios, and grid_sizes must have the same length"
anchors = []
for s, ar, gs in zip(scales, aspect_ratios, grid_sizes):
s, ar = np.array(s), np.array(ar)
h_ratios = np.sqrt(ar)
w_ratios = 1 / h_ratios
ws = (w_ratios[:, None] * s[None, :]).reshape(-1)
hs = (h_ratios[:, None] * s[None, :]).reshape(-1)
base_anchors = (np.stack([-ws, -hs, ws, hs], axis=1) / 2).round()
stride_h, stride_w = input_size[0] // gs[0], input_size[1] // gs[1]
shifts_x, shifts_y = np.meshgrid(np.arange(gs[1]) * stride_w, np.arange(gs[0]) * stride_h)
shifts_x, shifts_y = shifts_x.reshape(-1), shifts_y.reshape(-1)
shifts = np.stack([shifts_x, shifts_y, shifts_x, shifts_y], axis=1, dtype=np.float32)
anchors.append((shifts[:, None] + base_anchors[None, :]).reshape(-1, 4))
return anchors
class BoxCoder(object):
def __init__(self, weights, bbox_xform_clip=math.log(1000. / 16), apply_to_remove=True):
self.weights = weights
self.bbox_xform_clip = bbox_xform_clip
self.apply_to_remove = apply_to_remove
def encode(self, reference_boxes, proposals):
TO_REMOVE = self.apply_to_remove # TODO remove
ex_widths = proposals[..., 2] - proposals[..., 0] + TO_REMOVE
ex_heights = proposals[..., 3] - proposals[..., 1] + TO_REMOVE
ex_ctr_x = proposals[..., 0] + 0.5 * ex_widths
ex_ctr_y = proposals[..., 1] + 0.5 * ex_heights
gt_widths = reference_boxes[..., 2] - reference_boxes[..., 0] + TO_REMOVE
gt_heights = reference_boxes[..., 3] - reference_boxes[..., 1] + TO_REMOVE
gt_ctr_x = reference_boxes[..., 0] + 0.5 * gt_widths
gt_ctr_y = reference_boxes[..., 1] + 0.5 * gt_heights
wx, wy, ww, wh = self.weights
targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths
targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights
targets_dw = ww * Tensor.log(gt_widths / ex_widths)
targets_dh = wh * Tensor.log(gt_heights / ex_heights)
targets = Tensor.stack(targets_dx, targets_dy, targets_dw, targets_dh, dim=-1)
return targets
def decode(self, rel_codes, boxes):
boxes = boxes.cast(rel_codes.dtype)
rel_codes = rel_codes
TO_REMOVE = self.apply_to_remove # TODO remove
widths = boxes[:, 2] - boxes[:, 0] + TO_REMOVE
heights = boxes[:, 3] - boxes[:, 1] + TO_REMOVE
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = self.weights
dx = rel_codes[:, 0::4] / wx
dy = rel_codes[:, 1::4] / wy
dw = rel_codes[:, 2::4] / ww
dh = rel_codes[:, 3::4] / wh
# Prevent sending too large values into Tensor.exp()
dw = dw.clip(min_=dw.min(), max_=self.bbox_xform_clip)
dh = dh.clip(min_=dh.min(), max_=self.bbox_xform_clip)
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
pred_w = dw.exp() * widths[:, None]
pred_h = dh.exp() * heights[:, None]
x = pred_ctr_x - 0.5 * pred_w
y = pred_ctr_y - 0.5 * pred_h
w = pred_ctr_x + 0.5 * pred_w - 1
h = pred_ctr_y + 0.5 * pred_h - 1
pred_boxes = Tensor.stack(x, y, w, h).permute(1,2,0).reshape(rel_codes.shape[0], rel_codes.shape[1])
return pred_boxes