carrot/tinygrad_repo/examples/benchmark_onnx.py

37 lines
1.2 KiB
Python
Raw Normal View History

import sys, onnx, time, pickle
from tinygrad import TinyJit, GlobalCounters, fetch, getenv
2025-04-18 20:38:55 +09:00
from tinygrad.frontend.onnx import OnnxRunner
from extra.onnx_helpers import get_example_inputs, validate
def load_onnx_model(onnx_file):
onnx_model = onnx.load(onnx_file)
run_onnx = OnnxRunner(onnx_model)
run_onnx_jit = TinyJit(lambda **kwargs: next(iter(run_onnx({k:v.to(None) for k,v in kwargs.items()}).values())), prune=True, optimize=True)
2025-04-18 20:38:55 +09:00
return run_onnx_jit, run_onnx.graph_inputs
if __name__ == "__main__":
onnx_file = fetch(sys.argv[1])
run_onnx_jit, input_specs = load_onnx_model(onnx_file)
print("loaded model")
for i in range(3):
new_inputs = get_example_inputs(input_specs)
GlobalCounters.reset()
print(f"run {i}")
run_onnx_jit(**new_inputs)
# run 20 times
for _ in range(20):
new_inputs = get_example_inputs(input_specs)
GlobalCounters.reset()
st = time.perf_counter()
out = run_onnx_jit(**new_inputs)
mt = time.perf_counter()
val = out.numpy()
et = time.perf_counter()
print(f"enqueue {(mt-st)*1e3:6.2f} ms -- total run {(et-st)*1e3:6.2f} ms")
if getenv("ORT"):
validate(onnx_file, new_inputs, rtol=1e-3, atol=1e-3)
print("model validated")