148 lines
6.8 KiB
Python
Raw Normal View History

# sorted in order of increasing complexity
from tinygrad.helpers import dedup, flatten, getenv, unwrap
from tinygrad.tensor import Tensor
from tinygrad.dtype import dtypes, least_upper_dtype
class Optimizer:
"""
Base class for all optimizers.
"""
def __init__(self, params: list[Tensor], lr: float):
# if it's None, but being put into an optimizer, set it to True
for x in params:
if x.requires_grad is None: x.requires_grad = True
self.params: list[Tensor] = dedup([x for x in params if x.requires_grad])
assert len(self.params) != 0, "optimizer must have at least one param"
self.device = self.params[0].device
self.buffers: list[Tensor] = dedup([x for x in params if not x.requires_grad]) # buffers are still realized
# store lr in at least float32 precision
self.lr = Tensor(lr if getenv("CONST_LR") else [lr], requires_grad=False, device=self.device,
dtype=least_upper_dtype(dtypes.default_float, dtypes.float32))
def zero_grad(self):
"""
Zeroes the gradients of all the parameters.
"""
for param in self.params: param.grad = None
def step(self):
"""
Performs a single optimization step.
"""
Tensor.realize(*self.schedule_step())
def schedule_step(self) -> list[Tensor]:
"""
Returns the tensors that need to be realized to perform a single optimization step.
"""
assert Tensor.training, (
f"""Tensor.training={Tensor.training}, Tensor.training must be enabled to use the optimizer.
- help: Consider setting Tensor.training=True before calling Optimizer.step().""")
return self.schedule_step_with_grads([unwrap(t.grad) for t in self.params])+self.params+self.buffers
def schedule_step_with_grads(self, grads:list[Tensor]) -> list[Tensor]: raise NotImplementedError
class OptimizerGroup(Optimizer):
"""
Combines multiple optimizers into one.
"""
def __init__(self, *optimizers: Optimizer): # pylint: disable=super-init-not-called
self.optimizers = optimizers
self.params, self.buffers = flatten([o.params for o in self.optimizers]), flatten([o.buffers for o in self.optimizers])
def __getitem__(self, i): return self.optimizers[i]
def zero_grad(self): [o.zero_grad() for o in self.optimizers]
def schedule_step(self) -> list[Tensor]: return [x for o in self.optimizers for x in o.schedule_step()]
# LARS is essentially just trust ratio to SGD so if we just set the trust coeff 0.0 its just standard SGD.
def SGD(params: list[Tensor], lr=0.001, momentum=0.0, weight_decay=0.0, nesterov=False, classic=False):
"""
Stochastic Gradient Descent (SGD) optimizer with optional momentum and weight decay.
`classic` is a boolean flag that determines whether to use the popular momentum update rule or the classic momentum update rule.
- Described: https://paperswithcode.com/method/sgd
"""
return LARS(params, lr, momentum, weight_decay, nesterov, classic, tcoef=0.0)
class LARS(Optimizer):
"""
Layer-wise Adaptive Rate Scaling (LARS) optimizer with optional momentum and weight decay.
- Described: https://paperswithcode.com/method/lars
- Paper: https://arxiv.org/abs/1708.03888v3
"""
def __init__(self, params:list[Tensor], lr=0.001, momentum=0.9, weight_decay=1e-4, nesterov=False, classic=True, tcoef=0.001):
super().__init__(params, lr)
self.momentum, self.wd, self.nesterov, self.classic, self.tcoef = momentum, weight_decay, nesterov, classic, tcoef
self.b = [Tensor.zeros(*t.shape, dtype=t.dtype, device=t.device, requires_grad=False) for t in self.params] if self.momentum else []
def schedule_step_with_grads(self, grads:list[Tensor]) -> list[Tensor]:
for i, (t, g) in enumerate(zip(self.params, grads)):
# contiguous is needed since the grads can allegedly form a "diamond"
# TODO: fix this in lazy.py
g = g.contiguous()
if self.tcoef != 0:
r1 = t.detach().square().sum().sqrt()
r2 = g.square().sum().sqrt()
r = (r1 > 0).where((r2 > 0).where(self.tcoef * r1 / (r2 + self.wd * r1), 1.0), 1.0)
else: r = 1.0
g = g + self.wd * t.detach()
# classic momentum does post learning rate update
if self.classic: g = g * r * self.lr
if self.momentum:
self.b[i].assign(self.momentum * self.b[i] + g) # NOTE: self.b[i] is zero on the first run, no if required
g = (g + self.momentum * self.b[i]) if self.nesterov else self.b[i]
# popular momentum does pre learning rate update
if not self.classic: g = g * r * self.lr
t.assign((t.detach() - g).cast(t.dtype))
return self.b
# LAMB is essentially just the trust ratio part of LARS applied to Adam/W so if we just set the trust ratio to 1.0 its just Adam/W.
def AdamW(params: list[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-8, weight_decay=0.01):
"""
AdamW optimizer with optional weight decay.
- Described: https://paperswithcode.com/method/adamw
- Paper: https://arxiv.org/abs/1711.05101v3
"""
return LAMB(params, lr, b1, b2, eps, weight_decay, adam=True)
def Adam(params: list[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-8):
"""
Adam optimizer.
- Described: https://paperswithcode.com/method/adam
- Paper: https://arxiv.org/abs/1412.6980
"""
return LAMB(params, lr, b1, b2, eps, 0.0, adam=True)
class LAMB(Optimizer):
"""
LAMB optimizer with optional weight decay.
- Described: https://paperswithcode.com/method/lamb
- Paper: https://arxiv.org/abs/1904.00962
"""
def __init__(self, params: list[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-6, weight_decay=0.0, adam=False):
super().__init__(params, lr)
self.b1, self.b2, self.eps, self.wd, self.adam = b1, b2, eps, weight_decay, adam
self.b1_t, self.b2_t = (Tensor.ones((1,), dtype=dtypes.float32, device=self.device, requires_grad=False).contiguous() for _ in [b1, b2])
self.m = [Tensor.zeros(*t.shape, dtype=dtypes.float32, device=t.device, requires_grad=False).contiguous() for t in self.params]
self.v = [Tensor.zeros(*t.shape, dtype=dtypes.float32, device=t.device, requires_grad=False).contiguous() for t in self.params]
def schedule_step_with_grads(self, grads:list[Tensor]) -> list[Tensor]:
self.b1_t *= self.b1
self.b2_t *= self.b2
for i, (t, g) in enumerate(zip(self.params, grads)):
self.m[i].assign(self.b1 * self.m[i] + (1.0 - self.b1) * g)
self.v[i].assign(self.b2 * self.v[i] + (1.0 - self.b2) * (g * g))
m_hat = self.m[i] / (1.0 - self.b1_t)
v_hat = self.v[i] / (1.0 - self.b2_t)
up = (m_hat / (v_hat.sqrt() + self.eps)) + self.wd * t.detach()
if not self.adam:
r1 = t.detach().square().sum().sqrt()
r2 = up.square().sum().sqrt()
r = Tensor.where(r1 > 0, Tensor.where(r2 > 0, r1 / r2, 1.0), 1.0)
else:
r = 1.0
t.assign((t.detach() - self.lr * r * up).cast(t.dtype))
return [self.b1_t, self.b2_t] + self.m + self.v