carrot/tinygrad_repo/test/test_stunning.py

60 lines
2.1 KiB
Python
Raw Normal View History

import unittest
from tinygrad import nn, Tensor, Variable, Context, Device
from tinygrad.helpers import trange
class Model:
def __init__(self): self.layer = nn.Linear(28*28, 10)
def __call__(self, x:Tensor) -> Tensor: return self.layer(x.flatten(1))
class TestStunning(unittest.TestCase):
def test_indexing_variable(self):
a = Tensor.arange(100*10).reshape(100, 10).contiguous()
# index without variable
nv = a[12].tolist()
# index with variable
vi = Variable('i', 0, a.shape[0]-1)
wv = a[vi.bind(12)].tolist()
self.assertListEqual(nv, wv)
def test_indexing_two_bind(self):
a = Tensor.arange(100*10).reshape(100, 10).contiguous()
nv = a[12].cat(a[76]).tolist()
vi = Variable('i', 0, a.shape[0]-1)
with self.assertRaisesRegex(AssertionError, "different values for the same key"):
wv = a[vi.bind(12)].cat(a[vi.bind(76)]).tolist()
self.assertListEqual(nv, wv)
@unittest.skipIf(Device.DEFAULT in {"WEBGPU", "NV", "CUDA"}, "Too many buffers / too slow")
@unittest.skip("This is binding a Variable to two different values")
def test_simple_train(self, steps=6, bs=4, adam=True):
X_train, Y_train, _, _ = nn.datasets.mnist()
model = Model()
if adam: opt = nn.optim.Adam(nn.state.get_parameters(model))
else: opt = nn.optim.SGD(nn.state.get_parameters(model), momentum=0.1)
samples = Tensor.randint(steps, bs, high=X_train.shape[0])
Y_train = Y_train.one_hot(10)
X_samp, Y_samp = X_train[samples], Y_train[samples]
vi = Variable('i', 0, samples.shape[0]-1)
with Context(FUSE_ARANGE=1, SPLIT_REDUCEOP=0):
with Tensor.train():
losses = []
for i in range(samples.shape[0]):
vib = vi.bind(i)
opt.zero_grad()
pred = model(X_samp[vib].realize())
loss = (pred - Y_samp[vib]).square().mean()
losses.append(loss.backward())
opt.schedule_step()
#losses = Tensor.stack(*losses)
# run
for i in (t:=trange(len(losses))): t.set_description(f"loss: {losses[i].item():6.2f}")
if __name__ == '__main__':
unittest.main()