carrot/selfdrive/locationd/test/test_locationd_scenarios.py

191 lines
7.5 KiB
Python
Raw Normal View History

import numpy as np
from collections import defaultdict
from enum import Enum
from openpilot.tools.lib.logreader import LogReader
from openpilot.selfdrive.test.process_replay.migration import migrate_all
from openpilot.selfdrive.test.process_replay.process_replay import replay_process_with_name
# TODO find a new segment to test
TEST_ROUTE = "4019fff6e54cf1c7|00000123--4bc0d95ef6/5"
GPS_MESSAGES = ['gpsLocationExternal', 'gpsLocation']
SELECT_COMPARE_FIELDS = {
'yaw_rate': ['angularVelocityDevice', 'z'],
'roll': ['orientationNED', 'x'],
'inputs_flag': ['inputsOK'],
'sensors_flag': ['sensorsOK'],
}
JUNK_IDX = 100
CONSISTENT_SPIKES_COUNT = 10
class Scenario(Enum):
BASE = 'base'
GYRO_OFF = 'gyro_off'
GYRO_SPIKE_MIDWAY = 'gyro_spike_midway'
GYRO_CONSISTENT_SPIKES = 'gyro_consistent_spikes'
ACCEL_OFF = 'accel_off'
ACCEL_SPIKE_MIDWAY = 'accel_spike_midway'
ACCEL_CONSISTENT_SPIKES = 'accel_consistent_spikes'
SENSOR_TIMING_SPIKE_MIDWAY = 'timing_spikes'
SENSOR_TIMING_CONSISTENT_SPIKES = 'timing_consistent_spikes'
def get_select_fields_data(logs):
def get_nested_keys(msg, keys):
val = None
for key in keys:
val = getattr(msg if val is None else val, key) if isinstance(key, str) else val[key]
return val
lp = [x.livePose for x in logs if x.which() == 'livePose']
data = defaultdict(list)
for msg in lp:
for key, fields in SELECT_COMPARE_FIELDS.items():
data[key].append(get_nested_keys(msg, fields))
for key in data:
data[key] = np.array(data[key][JUNK_IDX:], dtype=float)
return data
def modify_logs_midway(logs, which, count, fn):
non_which = [x for x in logs if x.which() != which]
which = [x for x in logs if x.which() == which]
temps = which[len(which) // 2:len(which) // 2 + count]
for i, temp in enumerate(temps):
temp = temp.as_builder()
fn(temp)
which[len(which) // 2 + i] = temp.as_reader()
return sorted(non_which + which, key=lambda x: x.logMonoTime)
def run_scenarios(scenario, logs):
if scenario == Scenario.BASE:
pass
elif scenario == Scenario.GYRO_OFF:
logs = sorted([x for x in logs if x.which() != 'gyroscope'], key=lambda x: x.logMonoTime)
elif scenario == Scenario.GYRO_SPIKE_MIDWAY or scenario == Scenario.GYRO_CONSISTENT_SPIKES:
def gyro_spike(msg):
msg.gyroscope.gyroUncalibrated.v[0] += 3.0
count = 1 if scenario == Scenario.GYRO_SPIKE_MIDWAY else CONSISTENT_SPIKES_COUNT
logs = modify_logs_midway(logs, 'gyroscope', count, gyro_spike)
elif scenario == Scenario.ACCEL_OFF:
logs = sorted([x for x in logs if x.which() != 'accelerometer'], key=lambda x: x.logMonoTime)
elif scenario == Scenario.ACCEL_SPIKE_MIDWAY or scenario == Scenario.ACCEL_CONSISTENT_SPIKES:
def acc_spike(msg):
msg.accelerometer.acceleration.v[0] += 100.0
count = 1 if scenario == Scenario.ACCEL_SPIKE_MIDWAY else CONSISTENT_SPIKES_COUNT
logs = modify_logs_midway(logs, 'accelerometer', count, acc_spike)
elif scenario == Scenario.SENSOR_TIMING_SPIKE_MIDWAY or scenario == Scenario.SENSOR_TIMING_CONSISTENT_SPIKES:
def timing_spike(msg):
msg.accelerometer.timestamp -= int(0.150 * 1e9)
count = 1 if scenario == Scenario.SENSOR_TIMING_SPIKE_MIDWAY else CONSISTENT_SPIKES_COUNT
logs = modify_logs_midway(logs, 'accelerometer', count, timing_spike)
replayed_logs = replay_process_with_name(name='locationd', lr=logs)
return get_select_fields_data(logs), get_select_fields_data(replayed_logs)
class TestLocationdScenarios:
"""
Test locationd with different scenarios. In all these scenarios, we expect the following:
- locationd kalman filter should never go unstable (we care mostly about yaw_rate, roll, gpsOK, inputsOK, sensorsOK)
- faulty values should be ignored, with appropriate flags set
"""
@classmethod
def setup_class(cls):
cls.logs = migrate_all(LogReader(TEST_ROUTE))
def test_base(self):
"""
Test: unchanged log
Expected Result:
- yaw_rate: unchanged
- roll: unchanged
"""
orig_data, replayed_data = run_scenarios(Scenario.BASE, self.logs)
assert np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.35))
assert np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.55))
def test_gyro_off(self):
"""
Test: no gyroscope message for the entire segment
Expected Result:
- yaw_rate: 0
- roll: 0
- sensorsOK: False
"""
_, replayed_data = run_scenarios(Scenario.GYRO_OFF, self.logs)
assert np.allclose(replayed_data['yaw_rate'], 0.0)
assert np.allclose(replayed_data['roll'], 0.0)
assert np.all(replayed_data['sensors_flag'] == 0.0)
def test_gyro_spike(self):
"""
Test: a gyroscope spike in the middle of the segment
Expected Result:
- yaw_rate: unchanged
- roll: unchanged
- inputsOK: False for some time after the spike, True for the rest
"""
orig_data, replayed_data = run_scenarios(Scenario.GYRO_SPIKE_MIDWAY, self.logs)
assert np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.35))
assert np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.55))
assert np.all(replayed_data['inputs_flag'] == orig_data['inputs_flag'])
assert np.all(replayed_data['sensors_flag'] == orig_data['sensors_flag'])
def test_consistent_gyro_spikes(self):
"""
Test: consistent timing spikes for N gyroscope messages in the middle of the segment
Expected Result: inputsOK becomes False after N of bad measurements
"""
orig_data, replayed_data = run_scenarios(Scenario.GYRO_CONSISTENT_SPIKES, self.logs)
assert np.diff(replayed_data['inputs_flag'])[501] == -1.0
assert np.diff(replayed_data['inputs_flag'])[708] == 1.0
def test_accel_off(self):
"""
Test: no accelerometer message for the entire segment
Expected Result:
- yaw_rate: 0
- roll: 0
- sensorsOK: False
"""
_, replayed_data = run_scenarios(Scenario.ACCEL_OFF, self.logs)
assert np.allclose(replayed_data['yaw_rate'], 0.0)
assert np.allclose(replayed_data['roll'], 0.0)
assert np.all(replayed_data['sensors_flag'] == 0.0)
def test_accel_spike(self):
"""
ToDo:
Test: an accelerometer spike in the middle of the segment
Expected Result: Right now, the kalman filter is not robust to small spikes like it is to gyroscope spikes.
"""
orig_data, replayed_data = run_scenarios(Scenario.ACCEL_SPIKE_MIDWAY, self.logs)
assert np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.35))
assert np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.55))
def test_single_timing_spike(self):
"""
Test: timing of 150ms off for the single accelerometer message in the middle of the segment
Expected Result: the message is ignored, and inputsOK is False for that time
"""
orig_data, replayed_data = run_scenarios(Scenario.SENSOR_TIMING_SPIKE_MIDWAY, self.logs)
assert np.all(replayed_data['inputs_flag'] == orig_data['inputs_flag'])
assert np.all(replayed_data['sensors_flag'] == orig_data['sensors_flag'])
def test_consistent_timing_spikes(self):
"""
Test: consistent timing spikes for N accelerometer messages in the middle of the segment
Expected Result: inputsOK becomes False after N of bad measurements
"""
orig_data, replayed_data = run_scenarios(Scenario.SENSOR_TIMING_CONSISTENT_SPIKES, self.logs)
assert np.diff(replayed_data['inputs_flag'])[501] == -1.0
assert np.diff(replayed_data['inputs_flag'])[707] == 1.0