carrot/tinygrad_repo/test/test_pickle.py

136 lines
4.2 KiB
Python
Raw Normal View History

import unittest, pickle, types
import numpy as np
from tinygrad import Tensor, TinyJit, Variable, dtypes
from tinygrad.helpers import GlobalCounters
from tinygrad.ops import PatternMatcher, UPat, UOp
class TestPickle(unittest.TestCase):
def test_pickle_code_object(self):
y = lambda x: x*2 # noqa: E731
code_str = pickle.dumps(y.__code__)
fxn = types.FunctionType(pickle.loads(code_str), globals())
self.assertEqual(fxn(2), 4)
def test_pickle_pattern_matcher(self):
pm = PatternMatcher([(UPat.cvar('x'), lambda x: x*2)])
sink = UOp.const(dtypes.int, 2)
tt = pm.rewrite(sink)
pm_str = pickle.dumps(pm)
pm2 = pickle.loads(pm_str)
self.assertEqual(pm2.rewrite(sink).key, tt.key)
def test_pickle_main_pattern_matcher(self):
from tinygrad.codegen.uopgraph import sym
pickle.dumps(sym)
def test_pickle_realized_tensor(self):
print("** init")
t = Tensor.rand(10, 10).realize()
st = pickle.dumps(t)
t_values = t.numpy()
del t # free buffers
print("** post pickle")
init = GlobalCounters.kernel_count
t2:Tensor = pickle.loads(st)
np.testing.assert_equal(t_values, t2.numpy())
# expect at most one COPY kernel
self.assertLessEqual(GlobalCounters.kernel_count-init, 1)
def test_pickle_realized_tensor_alt(self):
print("** init")
t = Tensor.rand(10, 10).to("CLANG").realize()
st = pickle.dumps(t)
t_values = t.numpy()
del t # free buffers
print("** post pickle")
init = GlobalCounters.kernel_count
t2:Tensor = pickle.loads(st)
np.testing.assert_equal(t_values, t2.numpy())
self.assertEqual(GlobalCounters.kernel_count-init, 0)
def test_pickle_unrealized_tensor(self):
t = Tensor.ones(10, 10)
st = pickle.dumps(t)
t2:Tensor = pickle.loads(st)
np.testing.assert_equal(t.numpy(), t2.numpy())
def test_pickle_variable(self):
v = Variable("i", 1, 20).bind(10)
t1 = Tensor.ones(10, v).contiguous()
t2 = Tensor.ones(10, v).contiguous()
ret = (t1+t2).sum(1)
st = pickle.dumps(ret)
del ret
vt2 = pickle.loads(st)
np.testing.assert_equal(vt2.numpy(), 20)
def test_pickle_buffer_view(self):
t = Tensor.arange(10, device="CLANG").contiguous().realize()
vt = t[3:5].contiguous().realize()
assert hasattr(vt.lazydata.buffer, 'base')
ref_value = vt.tolist()
st = pickle.dumps(vt)
del t, vt
vt2 = pickle.loads(st)
assert hasattr(vt2.lazydata.buffer, 'base')
assert ref_value == vt2.tolist()
def test_pickle_numpy(self):
t = Tensor(np.array([1,2,3,4.]))
st = pickle.dumps(t)
t2:Tensor = pickle.loads(st)
np.testing.assert_equal(t.numpy(), t2.numpy())
def test_pickle_jit(self):
@TinyJit
def add(a, b): return a.sum()+b+1
for _ in range(3): add(Tensor.rand(10, 10), Tensor.rand(10, 10))
st = pickle.dumps(add)
del add
add_fxn = pickle.loads(st)
x = Tensor.ones(10, 10).contiguous().realize()
y = Tensor.ones(10, 10).contiguous().realize()
print("post jit")
out = add_fxn(x, y)
np.testing.assert_equal(out.numpy(), 102)
def test_pickle_schedule(self):
a = Tensor([1,2])
out = a + 2
sched = out.schedule()
pk = pickle.dumps(sched)
sched_pk = pickle.loads(pk)
self.assertEqual(sched_pk[-1].ast, sched[-1].ast)
def test_pickle_renderer(self):
from tinygrad.device import Device
pk = pickle.dumps(Device.default.renderer)
pickle.loads(pk)
class TestPickleJIT(unittest.TestCase):
@classmethod
def setUpClass(cls):
@TinyJit
def add(a, b): return a.sum()+b+1
for _ in range(3): add(Tensor.rand(1000, 1000), Tensor.rand(1000, 1000))
cls.st = pickle.dumps(add)
del add
def test_inspect(self):
import io
class FakeClass:
def __init__(self, *args, **kwargs):
print(self.module, self.name)
class InspectUnpickler(pickle.Unpickler):
def find_class(self, module, name): return type("SpecializedFakeClass", (FakeClass,), {"name": name, "module": module})
InspectUnpickler(io.BytesIO(self.st)).load()
@unittest.skip("we are still saving intermediate buffers")
def test_size(self):
# confirm no intermediate buffers are saved
self.assertLess(len(self.st), 1_000_000)
if __name__ == '__main__':
unittest.main()