carrot/tinygrad_repo/test/test_transcendental.py

164 lines
7.6 KiB
Python
Raw Normal View History

import unittest
from tinygrad import Tensor, Device, dtypes
from tinygrad.tensor import _to_np_dtype
2025-04-18 20:38:55 +09:00
from tinygrad.helpers import Context, getenv, CI, OSX
from test.test_schedule import check_schedule
from test.test_dtype_alu import ht, dtypes_float
from tinygrad.device import is_dtype_supported
import numpy as np
2025-04-18 20:38:55 +09:00
import math
from hypothesis import given, settings, strategies as strat
settings.register_profile("my_profile", max_examples=200, deadline=None, derandomize=getenv("DERANDOMIZE_CI", False))
settings.load_profile("my_profile")
class TestTranscendentalMath(unittest.TestCase):
@unittest.skipUnless(is_dtype_supported(dtypes.float64, Device.DEFAULT), f"no float64 on {Device.DEFAULT}")
2025-04-18 20:38:55 +09:00
@unittest.skipIf(getenv("MOCKGPU") and Device.DEFAULT in {"NV", "CUDA"}, "crashed")
@given(ht.float64, strat.sampled_from([(Tensor.exp, np.exp), (Tensor.log, np.log), (Tensor.sin, np.sin)]))
def test_float64(self, x, op):
if op[0] == Tensor.sin:
# TODO: reduction does not work # 536870912.125 # 2914593.01171875 # 134217728.03125 # 230581075.65625 # 139216373.71875
if abs(x) > 100_000_000: return
with Context(TRANSCENDENTAL=2), np.errstate(all='ignore'):
np.testing.assert_allclose(op[0](Tensor([x], dtype=dtypes.float64)).numpy(),
op[1](np.array([x], dtype=_to_np_dtype(dtypes.float64))),
atol=3e-2, rtol=1e-5) # sin can have bigger atol for very big x
2025-04-18 20:38:55 +09:00
@unittest.skipIf(getenv("MOCKGPU") and Device.DEFAULT in {"NV", "CUDA"}, "crashed")
@given(ht.float32, strat.sampled_from([(Tensor.exp, np.exp),(Tensor.log, np.log)] +
([(Tensor.sin, np.sin)] if is_dtype_supported(dtypes.ulong) else [])))
def test_float32(self, x, op):
2025-04-18 20:38:55 +09:00
# wrong nan behavior on Vulkan
if (math.isnan(x) or (x < 0 and op[0] == Tensor.log)) and CI and Device.DEFAULT == "WEBGPU" and not OSX: return
with Context(TRANSCENDENTAL=2), np.errstate(all='ignore'):
np.testing.assert_allclose(op[0](Tensor([x], dtype=dtypes.float32)).numpy(),
op[1](np.array([x], dtype=_to_np_dtype(dtypes.float32))),
atol=2e-5, rtol=1e-5)
@unittest.skipUnless(is_dtype_supported(dtypes.float16, Device.DEFAULT), f"no float16 on {Device.DEFAULT}")
2025-04-18 20:38:55 +09:00
@given(ht.float16, strat.sampled_from([(Tensor.exp, np.exp),(Tensor.log, np.log)] +
([(Tensor.sin, np.sin)] if is_dtype_supported(dtypes.ulong) else [])))
def test_float16(self, x, op):
2025-04-18 20:38:55 +09:00
# wrong nan behavior on Vulkan
if (math.isnan(x) or (x < 0 and op[0] == Tensor.log)) and CI and Device.DEFAULT == "WEBGPU" and not OSX: return
with Context(TRANSCENDENTAL=2), np.errstate(all='ignore'):
np.testing.assert_allclose(op[0](Tensor([x], dtype=dtypes.float16)).numpy(),
op[1](np.array([x], dtype=_to_np_dtype(dtypes.float16))),
atol=1e-2, rtol=5e-3) # exp can have bigger rtol
@given(strat.sampled_from([(dtypes.float64, 709.5), (dtypes.float32, 88.7), (dtypes.float16, 11)]))
def test_exp_near_inf(self, dtype_x):
# reordering compute might return inf
dtype, x = dtype_x
if not is_dtype_supported(dtype): return
with Context(TRANSCENDENTAL=2):
y = Tensor([x], dtype=dtype).exp().numpy()
expected = np.exp(np.array([x], dtype=_to_np_dtype(dtype)))
np.testing.assert_allclose(y, expected, rtol=5e-3)
class TestFromFuzzer(unittest.TestCase):
@given(strat.sampled_from(dtypes_float))
2025-04-18 20:38:55 +09:00
@unittest.skipUnless(is_dtype_supported(dtypes.ulong), "Needs ulong")
def test_sin(self, dtype):
if not is_dtype_supported(dtype): return
if dtype == dtypes.float64:
# crashes in CI CUDA
2025-04-18 20:38:55 +09:00
if getenv("MOCKGPU") and Device.DEFAULT in {"NV", "CUDA"}: return
def _test_value(n: float, unit: float=1.0):
next_float = np.nextafter(1.0, 2.0, dtype=_to_np_dtype(dtype))
ulp = next_float - 1.0
ulp = unit * ulp
with Context(TRANSCENDENTAL=2):
np.testing.assert_allclose(Tensor([n], dtype=dtype).sin().numpy(), np.sin(np.array([n], dtype=_to_np_dtype(dtype))), atol=ulp, rtol=1e-5)
_test_value(-35.0)
_test_value(-25.0)
_test_value(25.0)
_test_value(30.0) # 30.0 == switch_over
_test_value(35.0)
_test_value(0.0)
_test_value(np.pi / 2)
# worst case of ulp 1.5
_test_value(np.pi * 2, unit=1.5)
@given(strat.sampled_from(dtypes_float))
2025-04-18 20:38:55 +09:00
@unittest.skipIf(Device.DEFAULT == "WEBGPU" and CI, "Nan location mismatch on Vulkan, Metal works")
def test_log2(self, dtype):
if not is_dtype_supported(dtype): return
if dtype == dtypes.float64:
# crashes in CI CUDA
2025-04-18 20:38:55 +09:00
if getenv("MOCKGPU") and Device.DEFAULT in {"NV", "CUDA"}: return
def _test_value(n: float, unit: float=1.0):
next_float = np.nextafter(1.0, 2.0, dtype=_to_np_dtype(dtype))
ulp = next_float - 1.0
ulp = unit * ulp
with Context(TRANSCENDENTAL=2):
np.testing.assert_allclose(Tensor([n], dtype=dtype).log2().numpy(), np.log2(np.array([n], dtype=_to_np_dtype(dtype))), atol=ulp, rtol=1e-5)
fmin = np.finfo(_to_np_dtype(dtype)).tiny
for scale in [1.0, 1e10, 1e20, 1e30]:
_test_value(fmin * scale)
_test_value(-fmin * scale)
_test_value(0)
_test_value(0.0000009)
class TestTranscendentalSchedule(unittest.TestCase):
2025-04-18 20:38:55 +09:00
@unittest.skipUnless(is_dtype_supported(dtypes.ulong), "Needs ulong")
def test_transcendental_sin_fusion(self):
with Context(TRANSCENDENTAL=2):
a = Tensor.empty(10)
b = Tensor.empty(10)
c = a.sin() + b.sin()
c = c.sin()
check_schedule(c, 1)
def test_transcendental_log2_fusion(self):
with Context(TRANSCENDENTAL=2):
a = Tensor.empty(10)
b = Tensor.empty(10)
c = a.log2() + b.log2()
c = c.log2()
check_schedule(c, 1)
def test_transcendental_exp2_fusion(self):
with Context(TRANSCENDENTAL=2):
a = Tensor.empty(10)
b = Tensor.empty(10)
c = a.exp2() + b.exp2()
c = c.exp2()
check_schedule(c, 1)
2025-04-18 20:38:55 +09:00
class TestTranscendentalVectorized(unittest.TestCase):
def _vectorized_data(self, low, high, vec_size):
np_data = np.linspace(low, high, num=(128 // vec_size) * vec_size, dtype=np.float32).reshape(-1, vec_size)
data = Tensor(np_data, dtype=dtypes.float32.vec(vec_size))
return data, np_data
def _test_vectorized_op(self, fxn, np_fxn, data_range, vec_size, param_range=None):
data, np_data = self._vectorized_data(data_range[0], data_range[1], vec_size)
if param_range:
param, np_param = self._vectorized_data(param_range[0], param_range[1], vec_size)
out, np_out = fxn(data, param), np_fxn(np_data, np_param)
else:
out, np_out = fxn(data), np_fxn(np_data)
np.testing.assert_allclose(out.numpy(), np_out, rtol=1e-4)
def test_exp2_vectorized(self):
for vec_size in [1,2,3,4,5,127,128]: self._test_vectorized_op(Tensor.exp2, np.exp2, (-100, 100), vec_size)
def test_log2_vectorized(self):
for vec_size in [1,2,3,4,5,127,128]: self._test_vectorized_op(Tensor.log2, np.log2, (0.001, 200), vec_size)
@unittest.skipIf(getenv("DSP"), "requires int division")
def test_sin_vectorized(self):
for vec_size in [1,2,3,4,5,127,128]: self._test_vectorized_op(Tensor.sin, np.sin, (-100, 100), vec_size)
def test_pow_vectorized(self):
# np.pow returns nan for negative values raised to a non-integral power
for vec_size in [1,2,3,4,5,127,128]: self._test_vectorized_op(Tensor.pow, np.pow, (0.001, 200), vec_size, param_range=(-10, 10))
def test_sqrt_vectorized(self):
for vec_size in [1,2,3,4,5,127,128]: self._test_vectorized_op(Tensor.sqrt, np.sqrt, (0, 100), vec_size)
if __name__ == '__main__':
unittest.main()