544 lines
19 KiB
Python
Raw Normal View History

import os, random, pickle, queue
from typing import List
from pathlib import Path
from multiprocessing import Queue, Process, shared_memory, connection, Lock, cpu_count
import numpy as np
from tinygrad import dtypes, Tensor
from tinygrad.helpers import getenv, prod, Context, round_up, tqdm, OSX
### ResNet
class MyQueue:
def __init__(self, multiple_readers=True, multiple_writers=True):
self._reader, self._writer = connection.Pipe(duplex=False)
self._rlock = Lock() if multiple_readers else None
self._wlock = Lock() if multiple_writers else None
def get(self):
if self._rlock: self._rlock.acquire()
ret = pickle.loads(self._reader.recv_bytes())
if self._rlock: self._rlock.release()
return ret
def put(self, obj):
if self._wlock: self._wlock.acquire()
self._writer.send_bytes(pickle.dumps(obj))
if self._wlock: self._wlock.release()
def shuffled_indices(n, seed=None):
rng = random.Random(seed)
indices = {}
for i in range(n-1, -1, -1):
j = rng.randint(0, i)
if i not in indices: indices[i] = i
if j not in indices: indices[j] = j
indices[i], indices[j] = indices[j], indices[i]
yield indices[i]
del indices[i]
def loader_process(q_in, q_out, X:Tensor, seed):
import signal
signal.signal(signal.SIGINT, lambda _, __: exit(0))
from extra.datasets.imagenet import center_crop, preprocess_train
from PIL import Image
with Context(DEBUG=0):
while (_recv := q_in.get()) is not None:
idx, fn, val = _recv
if fn is not None:
img = Image.open(fn)
img = img.convert('RGB') if img.mode != "RGB" else img
if val:
# eval: 76.08%, load in 0m7.366s (0m5.301s with simd)
# sudo apt-get install libjpeg-dev
# CC="cc -mavx2" pip install -U --force-reinstall pillow-simd
img = center_crop(img)
img = np.array(img)
else:
# reseed rng for determinism
if seed is not None:
np.random.seed(seed * 2 ** 10 + idx)
random.seed(seed * 2 ** 10 + idx)
img = preprocess_train(img)
else:
# pad data with training mean
img = np.tile(np.array([[[123.68, 116.78, 103.94]]], dtype=np.uint8), (224, 224, 1))
# broken out
#img_tensor = Tensor(img.tobytes(), device='CPU')
#storage_tensor = X[idx].contiguous().realize().lazydata.base.realized
#storage_tensor._copyin(img_tensor.numpy())
# faster
X[idx].contiguous().realize().uop.base.realized.as_buffer(force_zero_copy=True)[:] = img.tobytes()
# ideal
#X[idx].assign(img.tobytes()) # NOTE: this is slow!
q_out.put(idx)
q_out.put(None)
def batch_load_resnet(batch_size=64, val=False, shuffle=True, seed=None, pad_first_batch=False):
from extra.datasets.imagenet import get_train_files, get_val_files
files = get_val_files() if val else get_train_files()
from extra.datasets.imagenet import get_imagenet_categories
cir = get_imagenet_categories()
if pad_first_batch:
FIRST_BATCH_PAD = round_up(len(files), batch_size) - len(files)
else:
FIRST_BATCH_PAD = 0
file_count = FIRST_BATCH_PAD + len(files)
BATCH_COUNT = min(32, file_count // batch_size)
def _gen():
for _ in range(FIRST_BATCH_PAD): yield -1
yield from shuffled_indices(len(files), seed=seed) if shuffle else iter(range(len(files)))
gen = iter(_gen())
def enqueue_batch(num):
for idx in range(num*batch_size, (num+1)*batch_size):
fidx = next(gen)
if fidx != -1:
fn = files[fidx]
q_in.put((idx, fn, val))
Y[idx] = cir[fn.split("/")[-2]]
else:
# padding
q_in.put((idx, None, val))
Y[idx] = -1
shutdown = False
class Cookie:
def __init__(self, num): self.num = num
def __del__(self):
if not shutdown:
try: enqueue_batch(self.num)
except StopIteration: pass
gotten = [0]*BATCH_COUNT
def receive_batch():
while 1:
num = q_out.get()//batch_size
gotten[num] += 1
if gotten[num] == batch_size: break
gotten[num] = 0
return X[num*batch_size:(num+1)*batch_size], Y[num*batch_size:(num+1)*batch_size], Cookie(num)
#q_in, q_out = MyQueue(multiple_writers=False), MyQueue(multiple_readers=False)
q_in, q_out = Queue(), Queue()
sz = (batch_size*BATCH_COUNT, 224, 224, 3)
shm_name = "resnet_X_val" if val else "resnet_X_train"
if not OSX and os.path.exists(f"/dev/shm/{shm_name}"): os.unlink(f"/dev/shm/{shm_name}")
shm = shared_memory.SharedMemory(name=shm_name, create=True, size=prod(sz))
procs = []
try:
# disk:shm is slower
if OSX: X = Tensor.empty(*sz, dtype=dtypes.uint8, device=f"disk:shm:{shm.name}")
else: X = Tensor.empty(*sz, dtype=dtypes.uint8, device=f"disk:/dev/shm/{shm_name}")
Y = [None] * (batch_size*BATCH_COUNT)
for _ in range(cpu_count()):
p = Process(target=loader_process, args=(q_in, q_out, X, seed))
p.daemon = True
p.start()
procs.append(p)
for bn in range(BATCH_COUNT): enqueue_batch(bn)
# NOTE: this is batch aligned, last ones are ignored unless pad_first_batch is True
for _ in range(0, file_count//batch_size): yield receive_batch()
finally:
shutdown = True
# empty queues
for _ in procs: q_in.put(None)
q_in.close()
for _ in procs:
while q_out.get() is not None: pass
q_out.close()
# shutdown processes
for p in procs: p.join()
shm.close()
try:
shm.unlink()
except FileNotFoundError:
# happens with BENCHMARK set
pass
### BERT
def process_batch_bert(data: List[dict]) -> dict[str, Tensor]:
return {
2025-04-18 20:38:55 +09:00
"input_ids": Tensor(np.concatenate([s["input_ids"] for s in data], axis=0), dtype=dtypes.int32, device="CPU"),
"input_mask": Tensor(np.concatenate([s["input_mask"] for s in data], axis=0), dtype=dtypes.int32, device="CPU"),
"segment_ids": Tensor(np.concatenate([s["segment_ids"] for s in data], axis=0), dtype=dtypes.int32, device="CPU"),
"masked_lm_positions": Tensor(np.concatenate([s["masked_lm_positions"] for s in data], axis=0), dtype=dtypes.int32, device="CPU"),
"masked_lm_ids": Tensor(np.concatenate([s["masked_lm_ids"] for s in data], axis=0), dtype=dtypes.int32, device="CPU"),
"masked_lm_weights": Tensor(np.concatenate([s["masked_lm_weights"] for s in data], axis=0), dtype=dtypes.float32, device="CPU"),
"next_sentence_labels": Tensor(np.concatenate([s["next_sentence_labels"] for s in data], axis=0), dtype=dtypes.int32, device="CPU"),
}
def load_file(file: str):
with open(file, "rb") as f:
return pickle.load(f)
class InterleavedDataset:
def __init__(self, files:List[str], cycle_length:int):
self.dataset = files
self.cycle_length = cycle_length
self.queues = [queue.Queue() for _ in range(self.cycle_length)]
for i in range(len(self.queues)): self.queues[i].queue.extend(load_file(self.dataset.pop(0)))
self.queue_pointer = len(self.queues) - 1
def get(self):
# Round-robin across queues
try:
self.advance()
return self.queues[self.queue_pointer].get_nowait()
except queue.Empty:
self.fill(self.queue_pointer)
return self.get()
def advance(self):
self.queue_pointer = (self.queue_pointer + 1) % self.cycle_length
def fill(self, queue_index: int):
try:
file = self.dataset.pop(0)
except IndexError:
return
self.queues[queue_index].queue.extend(load_file(file))
# Reference: https://github.com/mlcommons/training/blob/1c8a098ae3e70962a4f7422c0b0bd35ae639e357/language_model/tensorflow/bert/run_pretraining.py, Line 394
def batch_load_train_bert(BS:int):
from extra.datasets.wikipedia import get_wiki_train_files
fs = sorted(get_wiki_train_files())
train_files = []
while fs: # TF shuffle
random.shuffle(fs)
train_files.append(fs.pop(0))
cycle_length = min(getenv("NUM_CPU_THREADS", min(os.cpu_count(), 8)), len(train_files))
assert cycle_length > 0, "cycle_length must be greater than 0"
dataset = InterleavedDataset(train_files, cycle_length)
while True:
2025-04-18 20:38:55 +09:00
yield process_batch_bert([dataset.get() for _ in range(BS)])
# Reference: https://github.com/mlcommons/training/blob/1c8a098ae3e70962a4f7422c0b0bd35ae639e357/language_model/tensorflow/bert/run_pretraining.py, Line 416
def batch_load_val_bert(BS:int):
file = getenv("BASEDIR", Path(__file__).parent.parents[1] / "extra" / "datasets" / "wiki") / "eval.pkl"
dataset = load_file(file)
idx = 0
while True:
start_idx = (idx * BS) % len(dataset)
end_idx = ((idx + 1) * BS) % len(dataset)
if start_idx < end_idx:
yield process_batch_bert(dataset[start_idx:end_idx])
else: # wrap around the end to the beginning of the dataset
yield process_batch_bert(dataset[start_idx:] + dataset[:end_idx])
idx += 1
### UNET3D
def load_unet3d_data(preprocessed_dataset_dir, seed, queue_in, queue_out, X:Tensor, Y:Tensor):
from extra.datasets.kits19 import rand_balanced_crop, rand_flip, random_brightness_augmentation, gaussian_noise
while (data := queue_in.get()) is not None:
idx, fn, val = data
case_name = os.path.basename(fn).split("_x.npy")[0]
x, y = np.load(preprocessed_dataset_dir / f"{case_name}_x.npy"), np.load(preprocessed_dataset_dir / f"{case_name}_y.npy")
if not val:
if seed is not None:
np.random.seed(seed)
random.seed(seed)
x, y = rand_balanced_crop(x, y)
x, y = rand_flip(x, y)
x, y = x.astype(np.float32), y.astype(np.uint8)
x = random_brightness_augmentation(x)
x = gaussian_noise(x)
X[idx].contiguous().realize().uop.base.realized.as_buffer(force_zero_copy=True)[:] = x.tobytes()
Y[idx].contiguous().realize().uop.base.realized.as_buffer(force_zero_copy=True)[:] = y.tobytes()
queue_out.put(idx)
queue_out.put(None)
def batch_load_unet3d(preprocessed_dataset_dir:Path, batch_size:int=6, val:bool=False, shuffle:bool=True, seed=None):
assert preprocessed_dataset_dir is not None, "run preprocess_data on kits19"
files = sorted(list(preprocessed_dataset_dir.glob("*_x.npy")))
file_indices = list(range(len(files)))
batch_count = min(32, len(files) // batch_size)
queue_in, queue_out = Queue(), Queue()
procs, data_out_count = [], [0] * batch_count
shm_name_x, shm_name_y = "unet3d_x", "unet3d_y"
sz = (batch_size * batch_count, 1, 128, 128, 128)
if os.path.exists(f"/dev/shm/{shm_name_x}"): os.unlink(f"/dev/shm/{shm_name_x}")
if os.path.exists(f"/dev/shm/{shm_name_y}"): os.unlink(f"/dev/shm/{shm_name_y}")
shm_x = shared_memory.SharedMemory(name=shm_name_x, create=True, size=prod(sz))
shm_y = shared_memory.SharedMemory(name=shm_name_y, create=True, size=prod(sz))
shutdown = False
class Cookie:
def __init__(self, bc):
self.bc = bc
def __del__(self):
if not shutdown:
try: enqueue_batch(self.bc)
except StopIteration: pass
def enqueue_batch(bc):
for idx in range(bc * batch_size, (bc+1) * batch_size):
fn = files[next(ds_iter)]
queue_in.put((idx, fn, val))
def shuffle_indices(file_indices, seed=None):
rng = random.Random(seed)
rng.shuffle(file_indices)
if shuffle: shuffle_indices(file_indices, seed=seed)
ds_iter = iter(file_indices)
try:
X = Tensor.empty(*sz, dtype=dtypes.float32, device=f"disk:/dev/shm/{shm_name_x}")
Y = Tensor.empty(*sz, dtype=dtypes.uint8, device=f"disk:/dev/shm/{shm_name_y}")
for _ in range(cpu_count()):
proc = Process(target=load_unet3d_data, args=(preprocessed_dataset_dir, seed, queue_in, queue_out, X, Y))
proc.daemon = True
proc.start()
procs.append(proc)
for bc in range(batch_count):
enqueue_batch(bc)
for _ in range(len(files) // batch_size):
while True:
bc = queue_out.get() // batch_size
data_out_count[bc] += 1
if data_out_count[bc] == batch_size: break
data_out_count[bc] = 0
yield X[bc * batch_size:(bc + 1) * batch_size], Y[bc * batch_size:(bc + 1) * batch_size], Cookie(bc)
finally:
shutdown = True
for _ in procs: queue_in.put(None)
queue_in.close()
for _ in procs:
while queue_out.get() is not None: pass
queue_out.close()
# shutdown processes
for proc in procs: proc.join()
shm_x.close()
shm_y.close()
try:
shm_x.unlink()
shm_y.unlink()
except FileNotFoundError:
# happens with BENCHMARK set
pass
2025-04-18 20:38:55 +09:00
### RetinaNet
def load_retinanet_data(base_dir:Path, val:bool, queue_in:Queue, queue_out:Queue,
imgs:Tensor, boxes:Tensor, labels:Tensor, matches:Tensor|None=None,
anchors:Tensor|None=None, seed:int|None=None):
from extra.datasets.openimages import image_load, random_horizontal_flip, resize
from examples.mlperf.helpers import box_iou, find_matches, generate_anchors
import torch
while (data:=queue_in.get()) is not None:
idx, img, tgt = data
img = image_load(base_dir, img["subset"], img["file_name"])
if val:
img = resize(img)[0]
else:
if seed is not None:
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
img, tgt = random_horizontal_flip(img, tgt)
img, tgt, _ = resize(img, tgt=tgt)
match_quality_matrix = box_iou(tgt["boxes"], (anchor := np.concatenate(generate_anchors((800, 800)))))
match_idxs = find_matches(match_quality_matrix, allow_low_quality_matches=True)
clipped_match_idxs = np.clip(match_idxs, 0, None)
clipped_boxes, clipped_labels = tgt["boxes"][clipped_match_idxs], tgt["labels"][clipped_match_idxs]
boxes[idx].contiguous().realize().uop.base.realized.as_buffer(force_zero_copy=True)[:] = clipped_boxes.tobytes()
labels[idx].contiguous().realize().uop.base.realized.as_buffer(force_zero_copy=True)[:] = clipped_labels.tobytes()
matches[idx].contiguous().realize().uop.base.realized.as_buffer(force_zero_copy=True)[:] = match_idxs.tobytes()
anchors[idx].contiguous().realize().uop.base.realized.as_buffer(force_zero_copy=True)[:] = anchor.tobytes()
2025-04-18 20:38:55 +09:00
imgs[idx].contiguous().realize().uop.base.realized.as_buffer(force_zero_copy=True)[:] = img.tobytes()
2025-04-18 20:38:55 +09:00
queue_out.put(idx)
queue_out.put(None)
def batch_load_retinanet(dataset, val:bool, base_dir:Path, batch_size:int=32, shuffle:bool=True, seed:int|None=None):
def _enqueue_batch(bc):
from extra.datasets.openimages import prepare_target
for idx in range(bc * batch_size, (bc+1) * batch_size):
img = dataset.loadImgs(next(dataset_iter))[0]
ann = dataset.loadAnns(dataset.getAnnIds(img_id:=img["id"]))
tgt = prepare_target(ann, img_id, (img["height"], img["width"]))
if img_ids is not None:
img_ids[idx] = img_id
if img_sizes is not None:
img_sizes[idx] = tgt["image_size"]
queue_in.put((idx, img, tgt))
def _setup_shared_mem(shm_name:str, size:tuple[int, ...], dtype:dtypes) -> tuple[shared_memory.SharedMemory, Tensor]:
if os.path.exists(f"/dev/shm/{shm_name}"): os.unlink(f"/dev/shm/{shm_name}")
shm = shared_memory.SharedMemory(name=shm_name, create=True, size=prod(size))
shm_tensor = Tensor.empty(*size, dtype=dtype, device=f"disk:/dev/shm/{shm_name}")
return shm, shm_tensor
image_ids = sorted(dataset.imgs.keys())
batch_count = min(32, len(image_ids) // batch_size)
queue_in, queue_out = Queue(), Queue()
procs, data_out_count = [], [0] * batch_count
shm_imgs, imgs = _setup_shared_mem("retinanet_imgs", (batch_size * batch_count, 800, 800, 3), dtypes.uint8)
if val:
boxes, labels, matches, anchors = None, None, None, None
img_ids, img_sizes = [None] * (batch_size * batch_count), [None] * (batch_size * batch_count)
else:
img_ids, img_sizes = None, None
shm_boxes, boxes = _setup_shared_mem("retinanet_boxes", (batch_size * batch_count, 120087, 4), dtypes.float32)
shm_labels, labels = _setup_shared_mem("retinanet_labels", (batch_size * batch_count, 120087), dtypes.int64)
shm_matches, matches = _setup_shared_mem("retinanet_matches", (batch_size * batch_count, 120087), dtypes.int64)
shm_anchors, anchors = _setup_shared_mem("retinanet_anchors", (batch_size * batch_count, 120087, 4), dtypes.float64)
shutdown = False
class Cookie:
def __init__(self, bc):
self.bc = bc
def __del__(self):
if not shutdown:
try: _enqueue_batch(self.bc)
except StopIteration: pass
def shuffle_indices(indices, seed):
rng = random.Random(seed)
rng.shuffle(indices)
if shuffle: shuffle_indices(image_ids, seed=seed)
dataset_iter = iter(image_ids)
try:
for _ in range(cpu_count()):
proc = Process(
target=load_retinanet_data,
args=(base_dir, val, queue_in, queue_out, imgs, boxes, labels),
kwargs={"matches": matches, "anchors": anchors, "seed": seed}
)
proc.daemon = True
proc.start()
procs.append(proc)
for bc in range(batch_count):
_enqueue_batch(bc)
for _ in range(len(image_ids) // batch_size):
while True:
bc = queue_out.get() // batch_size
data_out_count[bc] += 1
if data_out_count[bc] == batch_size: break
data_out_count[bc] = 0
if val:
yield (imgs[bc * batch_size:(bc + 1) * batch_size],
img_ids[bc * batch_size:(bc + 1) * batch_size],
img_sizes[bc * batch_size:(bc + 1) * batch_size],
Cookie(bc))
else:
yield (imgs[bc * batch_size:(bc + 1) * batch_size],
boxes[bc * batch_size:(bc + 1) * batch_size],
labels[bc * batch_size:(bc + 1) * batch_size],
matches[bc * batch_size:(bc + 1) * batch_size],
anchors[bc * batch_size:(bc + 1) * batch_size],
Cookie(bc))
finally:
shutdown = True
for _ in procs: queue_in.put(None)
queue_in.close()
for _ in procs:
while queue_out.get() is not None: pass
queue_out.close()
# shutdown processes
for proc in procs: proc.join()
shm_imgs.close()
if not val:
shm_boxes.close()
shm_labels.close()
shm_matches.close()
shm_anchors.close()
try:
shm_imgs.unlink()
if not val:
shm_boxes.unlink()
shm_labels.unlink()
shm_matches.unlink()
shm_anchors.unlink()
except FileNotFoundError:
# happens with BENCHMARK set
pass
if __name__ == "__main__":
def load_unet3d(val):
assert not val, "validation set is not supported due to different sizes on inputs"
from extra.datasets.kits19 import get_train_files, get_val_files, preprocess_dataset, TRAIN_PREPROCESSED_DIR, VAL_PREPROCESSED_DIR
preprocessed_dir = VAL_PREPROCESSED_DIR if val else TRAIN_PREPROCESSED_DIR
files = get_val_files() if val else get_train_files()
if not preprocessed_dir.exists(): preprocess_dataset(files, preprocessed_dir, val)
with tqdm(total=len(files)) as pbar:
for x, _, _ in batch_load_unet3d(preprocessed_dir, val=val):
pbar.update(x.shape[0])
def load_resnet(val):
from extra.datasets.imagenet import get_train_files, get_val_files
files = get_val_files() if val else get_train_files()
with tqdm(total=len(files)) as pbar:
for x,y,c in batch_load_resnet(val=val):
pbar.update(x.shape[0])
2025-04-18 20:38:55 +09:00
def load_retinanet(val):
from extra.datasets.openimages import BASEDIR, download_dataset
from pycocotools.coco import COCO
dataset = COCO(download_dataset(base_dir:=getenv("BASEDIR", BASEDIR), "validation" if val else "train"))
2025-04-18 20:38:55 +09:00
with tqdm(total=len(dataset.imgs.keys())) as pbar:
for x in batch_load_retinanet(dataset, val, base_dir):
pbar.update(x[0].shape[0])
load_fn_name = f"load_{getenv('MODEL', 'resnet')}"
if load_fn_name in globals():
globals()[load_fn_name](getenv("VAL", 1))