carrot/selfdrive/car/gm/interface.py

361 lines
17 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
import os
2024-05-29 03:31:09 -07:00
from cereal import car, custom
from math import fabs, exp
from panda import Panda
from openpilot.common.basedir import BASEDIR
from openpilot.common.conversions import Conversions as CV
from openpilot.selfdrive.car import create_button_events, get_safety_config
from openpilot.selfdrive.car.gm.radar_interface import RADAR_HEADER_MSG
from openpilot.selfdrive.car.gm.values import CAR, CruiseButtons, CarControllerParams, EV_CAR, CAMERA_ACC_CAR, CanBus, GMFlags, CC_ONLY_CAR, SDGM_CAR
from openpilot.selfdrive.car.interfaces import CarInterfaceBase, TorqueFromLateralAccelCallbackType, FRICTION_THRESHOLD, LatControlInputs, NanoFFModel
from openpilot.selfdrive.controls.lib.drive_helpers import get_friction
ButtonType = car.CarState.ButtonEvent.Type
EventName = car.CarEvent.EventName
GearShifter = car.CarState.GearShifter
TransmissionType = car.CarParams.TransmissionType
NetworkLocation = car.CarParams.NetworkLocation
BUTTONS_DICT = {CruiseButtons.RES_ACCEL: ButtonType.accelCruise, CruiseButtons.DECEL_SET: ButtonType.decelCruise,
CruiseButtons.MAIN: ButtonType.altButton3, CruiseButtons.CANCEL: ButtonType.cancel}
2024-05-09 20:03:47 -07:00
FrogPilotButtonType = custom.FrogPilotCarState.ButtonEvent.Type
PEDAL_MSG = 0x201
CAM_MSG = 0x320 # AEBCmd
# TODO: Is this always linked to camera presence?
ACCELERATOR_POS_MSG = 0xbe
NON_LINEAR_TORQUE_PARAMS = {
CAR.BOLT_EUV: [2.6531724862969748, 1.0, 0.1919764879840985, 0.009054123646805178],
CAR.BOLT_CC: [2.6531724862969748, 1.0, 0.1919764879840985, 0.009054123646805178],
CAR.ACADIA: [4.78003305, 1.0, 0.3122, 0.05591772],
CAR.SILVERADO: [3.29974374, 1.0, 0.25571356, 0.0465122]
}
NEURAL_PARAMS_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/neural_ff_weights.json')
class CarInterface(CarInterfaceBase):
@staticmethod
def get_pid_accel_limits(CP, current_speed, cruise_speed):
return CarControllerParams.ACCEL_MIN, CarControllerParams.ACCEL_MAX
# Determined by iteratively plotting and minimizing error for f(angle, speed) = steer.
@staticmethod
def get_steer_feedforward_volt(desired_angle, v_ego):
desired_angle *= 0.02904609
sigmoid = desired_angle / (1 + fabs(desired_angle))
return 0.10006696 * sigmoid * (v_ego + 3.12485927)
def get_steer_feedforward_function(self):
if self.CP.carFingerprint in (CAR.VOLT, CAR.VOLT_CC):
return self.get_steer_feedforward_volt
else:
return CarInterfaceBase.get_steer_feedforward_default
def torque_from_lateral_accel_siglin(self, latcontrol_inputs: LatControlInputs, torque_params: car.CarParams.LateralTorqueTuning, lateral_accel_error: float,
lateral_accel_deadzone: float, friction_compensation: bool, gravity_adjusted: bool) -> float:
friction = get_friction(lateral_accel_error, lateral_accel_deadzone, FRICTION_THRESHOLD, torque_params, friction_compensation)
def sig(val):
return 1 / (1 + exp(-val)) - 0.5
# The "lat_accel vs torque" relationship is assumed to be the sum of "sigmoid + linear" curves
# An important thing to consider is that the slope at 0 should be > 0 (ideally >1)
# This has big effect on the stability about 0 (noise when going straight)
# ToDo: To generalize to other GMs, explore tanh function as the nonlinear
non_linear_torque_params = NON_LINEAR_TORQUE_PARAMS.get(self.CP.carFingerprint)
assert non_linear_torque_params, "The params are not defined"
a, b, c, _ = non_linear_torque_params
steer_torque = (sig(latcontrol_inputs.lateral_acceleration * a) * b) + (latcontrol_inputs.lateral_acceleration * c)
return float(steer_torque) + friction
def torque_from_lateral_accel_neural(self, latcontrol_inputs: LatControlInputs, torque_params: car.CarParams.LateralTorqueTuning, lateral_accel_error: float,
lateral_accel_deadzone: float, friction_compensation: bool, gravity_adjusted: bool) -> float:
friction = get_friction(lateral_accel_error, lateral_accel_deadzone, FRICTION_THRESHOLD, torque_params, friction_compensation)
inputs = list(latcontrol_inputs)
if gravity_adjusted:
inputs[0] += inputs[1]
return float(self.neural_ff_model.predict(inputs)) + friction
def torque_from_lateral_accel(self) -> TorqueFromLateralAccelCallbackType:
if self.CP.carFingerprint in (CAR.BOLT_EUV, CAR.BOLT_CC):
self.neural_ff_model = NanoFFModel(NEURAL_PARAMS_PATH, self.CP.carFingerprint)
return self.torque_from_lateral_accel_neural
elif self.CP.carFingerprint in NON_LINEAR_TORQUE_PARAMS:
return self.torque_from_lateral_accel_siglin
else:
return self.torque_from_lateral_accel_linear
@staticmethod
2024-05-24 02:41:19 -07:00
def _get_params(ret, params, candidate, fingerprint, car_fw, experimental_long, docs):
ret.carName = "gm"
ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.gm)]
ret.autoResumeSng = False
ret.enableBsm = 0x142 in fingerprint[CanBus.POWERTRAIN]
if PEDAL_MSG in fingerprint[0]:
ret.enableGasInterceptor = True
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_GAS_INTERCEPTOR
if candidate in EV_CAR:
ret.transmissionType = TransmissionType.direct
else:
ret.transmissionType = TransmissionType.automatic
ret.longitudinalTuning.deadzoneBP = [0.]
ret.longitudinalTuning.deadzoneV = [0.15]
ret.longitudinalTuning.kpBP = [5., 35.]
ret.longitudinalTuning.kiBP = [0.]
if candidate in CAMERA_ACC_CAR:
ret.experimentalLongitudinalAvailable = candidate not in CC_ONLY_CAR
ret.networkLocation = NetworkLocation.fwdCamera
ret.radarUnavailable = True # no radar
ret.pcmCruise = True
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_HW_CAM
ret.minEnableSpeed = 5 * CV.KPH_TO_MS
ret.minSteerSpeed = 10 * CV.KPH_TO_MS
# Tuning for experimental long
ret.longitudinalTuning.kpV = [2.0, 1.5]
ret.longitudinalTuning.kiV = [0.72]
ret.stoppingDecelRate = 2.0 # reach brake quickly after enabling
ret.vEgoStopping = 0.25
ret.vEgoStarting = 0.25
if experimental_long:
ret.pcmCruise = False
ret.openpilotLongitudinalControl = True
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_HW_CAM_LONG
elif candidate in SDGM_CAR:
ret.experimentalLongitudinalAvailable = False
ret.networkLocation = NetworkLocation.fwdCamera
ret.pcmCruise = True
ret.radarUnavailable = True
ret.minEnableSpeed = -1. # engage speed is decided by ASCM
ret.minSteerSpeed = 30 * CV.MPH_TO_MS
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_HW_SDGM
else: # ASCM, OBD-II harness
ret.openpilotLongitudinalControl = True
ret.networkLocation = NetworkLocation.gateway
ret.radarUnavailable = RADAR_HEADER_MSG not in fingerprint[CanBus.OBSTACLE] and not docs
ret.pcmCruise = False # stock non-adaptive cruise control is kept off
# supports stop and go, but initial engage must (conservatively) be above 18mph
ret.minEnableSpeed = 18 * CV.MPH_TO_MS
ret.minSteerSpeed = 7 * CV.MPH_TO_MS
# Tuning
ret.longitudinalTuning.kpV = [2.4, 1.5]
ret.longitudinalTuning.kiV = [0.36]
if ret.enableGasInterceptor:
# Need to set ASCM long limits when using pedal interceptor, instead of camera ACC long limits
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_HW_ASCM_LONG
# Start with a baseline tuning for all GM vehicles. Override tuning as needed in each model section below.
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2], [0.00]]
ret.lateralTuning.pid.kf = 0.00004 # full torque for 20 deg at 80mph means 0.00007818594
ret.steerActuatorDelay = 0.1 # Default delay, not measured yet
ret.steerLimitTimer = 0.4
ret.radarTimeStep = 0.0667 # GM radar runs at 15Hz instead of standard 20Hz
ret.longitudinalActuatorDelayUpperBound = 0.5 # large delay to initially start braking
if candidate in (CAR.VOLT, CAR.VOLT_CC):
ret.lateralTuning.pid.kpBP = [0., 40.]
ret.lateralTuning.pid.kpV = [0., 0.17]
ret.lateralTuning.pid.kiBP = [0.]
ret.lateralTuning.pid.kiV = [0.]
ret.lateralTuning.pid.kf = 1. # get_steer_feedforward_volt()
ret.steerActuatorDelay = 0.2
ret.minEnableSpeed = -1.
elif candidate == CAR.ACADIA:
ret.minEnableSpeed = -1. # engage speed is decided by pcm
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.BUICK_LACROSSE:
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.ESCALADE:
ret.minEnableSpeed = -1. # engage speed is decided by pcm
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate in (CAR.ESCALADE_ESV, CAR.ESCALADE_ESV_2019):
ret.minEnableSpeed = -1. # engage speed is decided by pcm
if candidate == CAR.ESCALADE_ESV:
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[10., 41.0], [10., 41.0]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.13, 0.24], [0.01, 0.02]]
ret.lateralTuning.pid.kf = 0.000045
else:
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate in (CAR.BOLT_EUV, CAR.BOLT_CC):
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
if ret.enableGasInterceptor:
# ACC Bolts use pedal for full longitudinal control, not just sng
ret.flags |= GMFlags.PEDAL_LONG.value
elif candidate == CAR.SILVERADO:
# On the Bolt, the ECM and camera independently check that you are either above 5 kph or at a stop
# with foot on brake to allow engagement, but this platform only has that check in the camera.
# TODO: check if this is split by EV/ICE with more platforms in the future
if ret.openpilotLongitudinalControl:
ret.minEnableSpeed = -1.
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate in (CAR.EQUINOX, CAR.EQUINOX_CC):
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate in (CAR.TRAILBLAZER, CAR.TRAILBLAZER_CC):
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate in (CAR.SUBURBAN, CAR.SUBURBAN_CC):
ret.steerActuatorDelay = 0.075
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.YUKON_CC:
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.XT4:
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.CT6_CC:
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.MALIBU_CC:
ret.steerActuatorDelay = 0.2
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
elif candidate == CAR.TRAX:
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
if ret.enableGasInterceptor:
ret.networkLocation = NetworkLocation.fwdCamera
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_HW_CAM
ret.minEnableSpeed = -1
ret.pcmCruise = False
ret.openpilotLongitudinalControl = True
ret.stoppingControl = True
ret.autoResumeSng = True
if candidate in CC_ONLY_CAR:
ret.flags |= GMFlags.PEDAL_LONG.value
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_PEDAL_LONG
# Note: Low speed, stop and go not tested. Should be fairly smooth on highway
ret.longitudinalTuning.kpBP = [5., 35.]
ret.longitudinalTuning.kpV = [0.35, 0.5]
ret.longitudinalTuning.kiBP = [0., 35.0]
ret.longitudinalTuning.kiV = [0.1, 0.1]
ret.longitudinalTuning.kf = 0.15
ret.stoppingDecelRate = 0.8
else: # Pedal used for SNG, ACC for longitudinal control otherwise
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_HW_CAM_LONG
ret.startingState = True
ret.vEgoStopping = 0.25
ret.vEgoStarting = 0.25
elif candidate in CC_ONLY_CAR:
ret.flags |= GMFlags.CC_LONG.value
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_CC_LONG
ret.radarUnavailable = True
ret.experimentalLongitudinalAvailable = False
ret.minEnableSpeed = 24 * CV.MPH_TO_MS
ret.openpilotLongitudinalControl = True
ret.pcmCruise = False
ret.longitudinalTuning.deadzoneBP = [0.]
ret.longitudinalTuning.deadzoneV = [0.56] # == 2 km/h/s, 1.25 mph/s
ret.stoppingDecelRate = 11.18 # == 25 mph/s (.04 rate)
ret.longitudinalActuatorDelayLowerBound = 1. # TODO: measure this
ret.longitudinalActuatorDelayUpperBound = 2.
ret.longitudinalTuning.kpBP = [10.7, 10.8, 28.] # 10.7 m/s == 24 mph
ret.longitudinalTuning.kpV = [0., 20., 20.] # set lower end to 0 since we can't drive below that speed
ret.longitudinalTuning.kiBP = [0.]
ret.longitudinalTuning.kiV = [0.1]
if candidate in CC_ONLY_CAR:
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_NO_ACC
# Exception for flashed cars, or cars whose camera was removed
if (ret.networkLocation == NetworkLocation.fwdCamera or candidate in CC_ONLY_CAR) and CAM_MSG not in fingerprint[CanBus.CAMERA] and not candidate in SDGM_CAR:
ret.flags |= GMFlags.NO_CAMERA.value
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_NO_CAMERA
if ACCELERATOR_POS_MSG not in fingerprint[CanBus.POWERTRAIN]:
ret.flags |= GMFlags.NO_ACCELERATOR_POS_MSG.value
return ret
# returns a car.CarState
2024-05-24 02:41:19 -07:00
def _update(self, c, frogpilot_variables):
ret, fp_ret = self.CS.update(self.cp, self.cp_cam, self.cp_loopback, frogpilot_variables)
# Don't add event if transitioning from INIT, unless it's to an actual button
if self.CS.cruise_buttons != CruiseButtons.UNPRESS or self.CS.prev_cruise_buttons != CruiseButtons.INIT:
ret.buttonEvents = [
*create_button_events(self.CS.cruise_buttons, self.CS.prev_cruise_buttons, BUTTONS_DICT,
unpressed_btn=CruiseButtons.UNPRESS),
*create_button_events(self.CS.distance_button, self.CS.prev_distance_button,
{1: ButtonType.gapAdjustCruise})
]
# The ECM allows enabling on falling edge of set, but only rising edge of resume
events = self.create_common_events(ret, extra_gears=[GearShifter.sport, GearShifter.low,
GearShifter.eco, GearShifter.manumatic],
pcm_enable=self.CP.pcmCruise, enable_buttons=(ButtonType.decelCruise,))
if not self.CP.pcmCruise:
if any(b.type == ButtonType.accelCruise and b.pressed for b in ret.buttonEvents):
events.add(EventName.buttonEnable)
# Enabling at a standstill with brake is allowed
# TODO: verify 17 Volt can enable for the first time at a stop and allow for all GMs
below_min_enable_speed = ret.vEgo < self.CP.minEnableSpeed or self.CS.moving_backward
if below_min_enable_speed and not (ret.standstill and ret.brake >= 20 and
(self.CP.networkLocation == NetworkLocation.fwdCamera and not self.CP.carFingerprint in SDGM_CAR)):
events.add(EventName.belowEngageSpeed)
if ret.cruiseState.standstill and not (self.CP.autoResumeSng or self.disable_resumeRequired):
events.add(EventName.resumeRequired)
self.resumeRequired_shown = True
# Disable the "resumeRequired" event after it's been shown once to not annoy the driver
if self.resumeRequired_shown and not ret.cruiseState.standstill:
self.disable_resumeRequired = True
if ret.vEgo < self.CP.minSteerSpeed and not self.disable_belowSteerSpeed:
events.add(EventName.belowSteerSpeed)
self.belowSteerSpeed_shown = True
# Disable the "belowSteerSpeed" event after it's been shown once to not annoy the driver
if self.belowSteerSpeed_shown and ret.vEgo >= self.CP.minSteerSpeed:
self.disable_belowSteerSpeed = True
if (self.CP.flags & GMFlags.CC_LONG.value) and ret.vEgo < self.CP.minEnableSpeed and ret.cruiseState.enabled:
events.add(EventName.speedTooLow)
if (self.CP.flags & GMFlags.PEDAL_LONG.value) and \
self.CP.transmissionType == TransmissionType.direct and \
not self.CS.single_pedal_mode and \
c.longActive:
events.add(EventName.pedalInterceptorNoBrake)
ret.events = events.to_msg()
2024-05-29 03:31:09 -07:00
return ret, fp_ret
2024-05-24 02:41:19 -07:00
def apply(self, c, now_nanos, frogpilot_variables):
return self.CC.update(c, self.CS, now_nanos, frogpilot_variables)