68 lines
2.3 KiB
Python
68 lines
2.3 KiB
Python
![]() |
#!/usr/bin/env python
|
||
|
import unittest
|
||
|
import numpy as np
|
||
|
from tinygrad.tensor import Tensor
|
||
|
from tinygrad.ops import Device
|
||
|
from tinygrad.helpers import dtypes
|
||
|
|
||
|
N = 200 # has to be bigger than the cache to fail
|
||
|
|
||
|
class TestAssign(unittest.TestCase):
|
||
|
def test_simple_assignment(self):
|
||
|
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
||
|
b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
||
|
a.realize()
|
||
|
b.realize()
|
||
|
ba1 = a.lazydata.realized
|
||
|
bb1 = b.lazydata.realized
|
||
|
a += b
|
||
|
a.realize()
|
||
|
ba2 = a.lazydata.realized
|
||
|
assert ba1 == ba2 and ba1 != bb1
|
||
|
np.testing.assert_allclose(a.numpy(), (np.arange(N*N)*2).reshape((N,N)))
|
||
|
|
||
|
@unittest.skipIf(Device.DEFAULT == "CPU" or Device.DEFAULT == "TORCH", "questionable tests")
|
||
|
def test_permuted_assignment(self):
|
||
|
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
||
|
b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
||
|
a.realize()
|
||
|
b.realize()
|
||
|
ba1 = a.lazydata.realized
|
||
|
bb1 = b.lazydata.realized
|
||
|
a = a.permute(1,0)
|
||
|
a += b
|
||
|
a.realize()
|
||
|
ba2 = a.lazydata.realized
|
||
|
assert ba1 != ba2 and ba1 != bb1
|
||
|
np.testing.assert_allclose(a.numpy(), np.arange(N*N).reshape((N,N)) + np.arange(N*N).reshape((N,N)).transpose(1,0))
|
||
|
|
||
|
def test_post_permuted_assignment(self):
|
||
|
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
||
|
b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
||
|
a.realize()
|
||
|
b.realize()
|
||
|
#GlobalCounters.cache = []
|
||
|
ba1 = a.lazydata.realized
|
||
|
bb1 = b.lazydata.realized
|
||
|
a.assign(a.permute(1,0) + b) # this should not work!
|
||
|
a.realize()
|
||
|
ba2 = a.lazydata.realized
|
||
|
# NOTE: don't test that it's assigned
|
||
|
#assert ba1 == ba2 and ba1 != bb1
|
||
|
np.testing.assert_allclose(a.numpy(), np.arange(N*N).reshape((N,N)) + np.arange(N*N).reshape((N,N)).transpose(1,0))
|
||
|
|
||
|
# TODO: is there a way to sneak in a permute such that it returns the wrong answer?
|
||
|
|
||
|
def test_cast_assignment(self):
|
||
|
a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N)
|
||
|
a.realize()
|
||
|
oba1 = a.lazydata.output_buffer
|
||
|
a.assign(a.cast(dtypes.int32).realize())
|
||
|
a.realize()
|
||
|
oba2 = a.lazydata.output_buffer
|
||
|
assert oba1 is None and oba2 is None
|
||
|
np.testing.assert_allclose(a.numpy(), np.arange(N*N,dtype=np.int32).reshape((N,N)))
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
unittest.main()
|