carrot/tinygrad_repo/extra/export_model.py

180 lines
9.6 KiB
Python
Raw Permalink Normal View History

from typing import Tuple, Dict, List
from tinygrad.helpers import DType
from tinygrad.tensor import Device, Tensor
from tinygrad.jit import TinyJit
from tinygrad.nn.state import get_state_dict
import json
EXPORT_SUPPORTED_DEVICE = ["WEBGPU", "CLANG", "CUDA", "GPU", "METAL"]
def compile_net(run:TinyJit, special_names:Dict[int,str]) -> Tuple[Dict[str,str],List[Tuple[str,List[str],List[int]]],Dict[str,Tuple[int,DType,int]],Dict[str,Tensor]]:
functions, bufs, bufs_to_save, statements, bufnum = {}, {}, {}, [], 0
for fxn,args,var_vals in run.jit_cache:
assert not var_vals, "symbolic shape is not supported"
functions[fxn.name] = fxn.prg # NOTE: this assumes all with the same name are the same
cargs = []
for i,arg in enumerate(args):
key = id(arg)
if key not in bufs:
if key in special_names:
bufs[key] = (special_names[key], arg._memsz, arg.dtype, key)
else:
bufs[key] = (f"buf_{bufnum}", arg._memsz, arg.dtype, key)
bufnum += 1
if i > 0: bufs_to_save[bufs[key][0]] = arg # if first usage of a buffer is not an output, and it's not a special name
cargs.append(bufs[key][0])
statements.append((fxn.name, cargs, fxn.global_size, fxn.local_size))
return functions, statements, {name:(size, dtype, key) for (name,size,dtype,key) in bufs.values()}, bufs_to_save
def jit_model(model, *args) -> Tuple[TinyJit,Dict[int,str]]:
assert hasattr(model, "forward") or callable(model), "model needs a forward function"
@TinyJit
def run(*x):
out = model.forward(*x) if hasattr(model, "forward") else model(*x)
assert isinstance(out, tuple) or isinstance(out, list) or isinstance(out, Tensor), "model output must be a Tensor, tuple, or a list of Tensors for export"
out = [out] if isinstance(out, Tensor) else out
return [o.realize() for o in out]
# twice to run the JIT
for _ in range(2): the_output = run(*args)
special_names = {}
# hack to put the inputs back
for (j,i),idx in run.input_replace.items():
realized_input = args[idx[0]].lazydata.realized
run.jit_cache[j][1][i] = realized_input
special_names[id(realized_input)] = f'input{idx[0]}'
# TODO: fetch this from the jit in self.input_replace and self.ret (hint: use get_parameters on self.ret)
for i, output in enumerate(the_output):
special_names[id(output.lazydata.realized)] = f'output{i}'
return run, special_names
def export_model_clang(functions:Dict[str,str], statements:Dict[str,Tuple[str,int,int]], bufs:Dict[str,Tuple[str,int,int]], bufs_to_save:Dict[str,Tensor], input_names:List[str], output_names:List[str]) -> str:
from tinygrad.runtime.ops_clang import CLANG_PROGRAM_HEADER
cprog = [CLANG_PROGRAM_HEADER]
for name,cl in bufs_to_save.items():
weight = ''.join(["\\x%02X"%x for x in bytes(cl._buf)])
cprog.append(f"unsigned char {name}_data[] = \"{weight}\";")
inputs = ", ".join([f'float* {input}' for input in input_names])
outputs = ", ".join([f'float* {output}' for output in output_names])
cprog += [f"float {name}[{len}];" if name not in bufs_to_save else f"float *{name} = (float *){name}_data;" for name,(len,dtype,_key) in bufs.items() if name not in ['input', 'outputs']]
cprog += list(functions.values())
cprog += [f"void net({inputs}, {outputs}) {{"] + [f"{name}({', '.join(args)});" for (name, args, _global_size, _local_size) in statements] + ["}"]
return '\n'.join(cprog)
def export_model_webgpu(functions, statements, bufs, bufs_to_save, weight_names, input_names, output_names) -> Tuple[str,int,int]:
kernel_code = '\n\n'.join([f"const {key} = `{code.replace(key, 'main')}`;" for key, code in functions.items()])
kernel_names = ', '.join([name for (name, _args, _global_size, _local_size) in statements])
kernel_calls = '\n '.join([f"addComputePass(device, commandEncoder, piplines[{i}], [{', '.join(args)}], {global_size});" for i, (_name, args, global_size, _local_size) in enumerate(statements) ])
_bufs = '\n '.join([f"const {name} = " + (f"createEmptyBuf(device, {size});" if _key not in weight_names else f"createWeightBuf(device, {size}, getTensorBuffer(safetensor, metadata['{weight_names[_key]}']))") + ";" for name,(size,dtype,_key) in bufs.items()])
gpu_write_bufs = '\n '.join([f"const gpuWriteBuffer{i} = device.createBuffer({{size:{input_name}.size, usage: GPUBufferUsage.COPY_SRC | GPUBufferUsage.MAP_WRITE }});" for i,input_name in enumerate(input_names)])
input_writers = '\n '.join([f"await gpuWriteBuffer{i}.mapAsync(GPUMapMode.WRITE);\n new Float32Array(gpuWriteBuffer{i}.getMappedRange()).set(" + f'_{inp_name});' + f"\n gpuWriteBuffer{i}.unmap();\n commandEncoder.copyBufferToBuffer(gpuWriteBuffer{i}, 0, {inp_name}, 0, gpuWriteBuffer{i}.size);" for i,inp_name in enumerate(input_names)])
gpu_read_bufs = '\n '.join([f"const gpuReadBuffer{i} = device.createBuffer({{size:{output_name}.size, usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ }});" for i,output_name in enumerate(output_names)])
outbuf_copies = '\n '.join([f"commandEncoder.copyBufferToBuffer({output_name}, 0, gpuReadBuffer{i}, 0, output{i}.size);" for i,output_name in enumerate(output_names)])
output_readers = '\n '.join([f"await gpuReadBuffer{i}.mapAsync(GPUMapMode.READ);\n const resultBuffer{i} = new Float32Array(gpuReadBuffer{i}.size);\n resultBuffer{i}.set(new Float32Array(gpuReadBuffer{i}.getMappedRange()));\n gpuReadBuffer{i}.unmap();" for i in range(len(output_names))])
output_return = '[{}]'.format(",".join([f'resultBuffer{i}' for i in range(len(output_names))]))
return f"""
const getTensorMetadata = (safetensorBuffer) => {{
const metadataLength = Number(new DataView(safetensorBuffer.buffer).getBigUint64(0, true));
const metadata = JSON.parse(new TextDecoder("utf8").decode(safetensorBuffer.subarray(8, 8 + metadataLength)));
return Object.fromEntries(Object.entries(metadata).filter(([k, v]) => k !== "__metadata__").map(([k, v]) => [k, {{...v, data_offsets: v.data_offsets.map(x => 8 + metadataLength + x)}}]));
}};
const getTensorBuffer = (safetensorBuffer, tensorMetadata) => {{
return safetensorBuffer.subarray(...tensorMetadata.data_offsets);
}}
const createEmptyBuf = (device, size) => {{
return device.createBuffer({{size, usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST }});
}};
const createWeightBuf = (device, size, data) => {{
const buf = device.createBuffer({{ mappedAtCreation: true, size, usage: GPUBufferUsage.STORAGE }});
new Uint8Array(buf.getMappedRange()).set(data);
buf.unmap();
return buf;
}};
const addComputePass = (device, commandEncoder, pipeline, bufs, workgroup) => {{
const bindGroup = device.createBindGroup({{layout: pipeline.getBindGroupLayout(0), entries: bufs.map((buffer, index) => ({{ binding: index, resource: {{ buffer }} }}))}});
const passEncoder = commandEncoder.beginComputePass();
passEncoder.setPipeline(pipeline);
passEncoder.setBindGroup(0, bindGroup);
passEncoder.dispatchWorkgroups(...workgroup);
passEncoder.end();
}};
{kernel_code}
const setupNet = async (device, safetensor) => {{
const metadata = getTensorMetadata(safetensor);
{_bufs}
{gpu_write_bufs}
{gpu_read_bufs}
const kernels = [{kernel_names}];
const piplines = await Promise.all(kernels.map(name => device.createComputePipelineAsync({{layout: "auto", compute: {{ module: device.createShaderModule({{ code: name }}), entryPoint: "main" }}}})));
return async ({",".join([f"_{input_name}" for input_name in input_names])}) => {{
const commandEncoder = device.createCommandEncoder();
{input_writers}
{kernel_calls}
{outbuf_copies}
const gpuCommands = commandEncoder.finish();
device.queue.submit([gpuCommands]);
{output_readers}
return {output_return};
}}
}}
""" + f"\n\nconst loadNet = async (device) => {{ return await fetch('net.safetensors').then(x => x.arrayBuffer()).then(x => setupNet(device, new Uint8Array(x))); }}"
def export_model(model, target:str, *inputs):
assert Device.DEFAULT in EXPORT_SUPPORTED_DEVICE, "only WEBGPU, CLANG, CUDA, GPU, METAL are supported"
run,special_names = jit_model(model, *inputs)
functions, statements, bufs, bufs_to_save = compile_net(run, special_names)
state = get_state_dict(model)
weight_names = {id(x.lazydata.realized): name for name, x in state.items()}
input_names = [name for _,name in special_names.items() if "input" in name]
output_names = [name for _,name in special_names.items() if "output" in name]
prg = ""
if target == "clang":
prg = export_model_clang(functions, statements, bufs, bufs_to_save, input_names, output_names)
elif target == "webgpu":
prg = export_model_webgpu(functions, statements, bufs, bufs_to_save, weight_names, input_names, output_names)
else:
prg = json.dumps({
"backend": Device.DEFAULT,
"inputs": [{
"size": bufs[name][0],
"dtype": bufs[name][1].name
} for name in input_names],
"outputs": [{
"size": bufs[name][0],
"dtype": bufs[name][1].name
} for name in output_names],
"functions": functions,
"statements": [{
"kernel": kernel,
"args": args,
"global_size": global_size,
"local_size": local_size
} for (kernel, args, global_size, local_size) in statements],
"buffers": {
name: {
"size": size,
"dtype": dtype.name,
"id": weight_names[_key] if _key in weight_names else ""
} for name, (size,dtype,_key) in bufs.items() if name not in ["input", "outputs"]
}
})
return prg, {input:bufs[input][0] for input in input_names}, {output:bufs[output][0] for output in output_names}, state